

SALSA-MEXICO Mexican Beef Production Chains LCA RESULTS

M Salud Rubio Lozano, Rafael Olea Pérez, Adriana Rivera, Gerardo Carrillo, Luis Felipe Quiroz, Myriam Pérez y Nelly Peña UNAM-TEAM Mexico

TROPICAL CATTLE. A DIFFERENT TYPE OF MEAT

TROPICS

Constant high temperature (at sea level and low elevations) — all 12 months of the year have average temperatures of 18 °C or higher

World map of Köppen-Geiger climate classification

TROPICAL COUNTRIES.

México, Central America, Colombia, Ecuador, Peru, Bolivia, Venezuela, Guyana, Surinam, French Guyana, North of Chile, Argentina, Paraguay and Brasil

Veracruz

TROPICAL PRODUCTION PILARS

• PASTURES

• BOS INDICUS

©2008 mongabay.com

Bos indicus

- Heat resistant
 - More and thick skin
 - More sweat glandules
 - Less subcutaneous fat

- Meat
 - Low carcass yield
 - Low IM fat
 - Tougher meat
 - Darker red
- Young bulls

Mendez et al (2009): **90%** of commercial cattle has strong *Bos indicus* influence

87.2% with hump > 7 cm

LATINAMERICA

BEEF PRODUCTION, MTn

Kg/capita

MEAT CONSUMPTION

Country	Beef (kg/person/ year)	Pork	Poultr	Mutto	Total
United States	44	31	48	1	123
Germany	16	54	15	1	86
Italy	26	35	19	2	82
Argentina	58	-	21	1	80
United Kingdom	16	25	27	6	74
Brazil	36	9	24	-	70
New Zealand	37	-	-	29	66
Mexico	21	10	20	2	53
China	5	35	11	2	53

Environmental impact evaluation of the Beef production chains in Mexico (Veracruz and Tabasco) using LCA

Beef Chains

Life Cycle Analysis Bounderies

- Spacial limit: North-Center of Veracruz.
- Time limit: 1 year for bussiness operation
 - •Production process limits: the analysis include the following phases: growth and development, pre-fattening, fattening, transformation and market.

Life Cycle Analysis Bounderies

- System limits
 - ✓ Feed inputs
 - ✓ Energy
 - ✓ Fertilizers and pesticides
 - ✓ Residues management
- NOT INCLUDED: production and maintenance of capital goods, production, consumption and emissions of drugs and cleaning products.

Functional Unit

1 kg of boneless, fatless meat at the consumer home

Inventory Analysis

- **Two study cases** were selected per process and type of chain
- Data recollection was addressed by direct interviews to beef production chain actors using semi-structured questionnaires

G&D: Breeding (W at birth 37 kg) until reaching 224 kg. Same for both chains.

Pre-fattening (Pf):

Intensive: 190 d, pasture and supplements---336 kg

Extensive: 243 d, pasture no supplement--348 kg

Fattening (Fat):

Intensive: 107 d in feedlots---- 514 kg

Extensive: 213 d, pasture with supplement---455 kg

Transformation (Tr):

Intensive: Modern—carcass yield 59% (17% debone)

Extensive: Traditional---carcass yield 52%.

Market (Mark):

Intensive: Boxed beef (bone and fat less). Decrease 8.9%.

Extensive: Carcasses. Decrease of 45%

Impact categories

Acidification (kgSO ₂ eq)	Humane Toxicity (Kg 1,4-Dbeq)		
	TOXIC		
Eutrofization (kg PO ₄ eq)	Fotochemical Oxidation (Kg C ₂ H ₄ eq)		
Global climate change (kg CO ₂ eq)	Water use (L)		
Ozone layer decrease (KgCFCeq)	Land use (m²)		

Acidification

Pre and Fattening > impact in INTENSIVE for the maize factor (requieres fosils fuel, fertilizers and pesticides)

Transformation> impact in INTENSIVE for the use of electricity in TIF **Market >** EXTENSIVE for the less eficcient use of electricity

Eutrophication

- **Pre-fattening** INTENSIVE > impact due to fertilizers
- **Fattening** EXTENSIVE > impact → no manure management
- **Fattening** INTENSIVE < impact → manure is applied to land. However, maize and other components of the diet make a greater impact in Eutrophication from fertilizers.
- **Transformation** EXTENSIVE > impact due to non-treated residual liquids and manure
- Market EXTENSIVE > impact due to the use of electricity

- **Pre-fattening** INTENSIVE > impact for fertilizers and maize
- Fattening EXTENSIVE > impact due to pasture and longer time to achieve final weight
- Transformation INTENSIVE > impact due to packeging and electricity
- Market EXTENSIVE > impact due to the use of electricity

Human toxicity

Intensive Extensive

Water use

Intensive Extensive

- Production EXTENSIVE > consumption of water for longer periods
- Transformation EXTENSIVE > impact due to lack of tecnification, notrained personnel and non-standarized processes.

Land use

Intensiva: 74 m²

Tradicional: 220 m²

> IMPACT ON EXTENSIVE CHAIN:

- Less production/land unit
- Longer period of time to achieve final weight

Results

Intensive

Extensive

Environmental impacts by process

IDENTIFIED PROBLEMS

INTENSIVE

- Has greater impact in 5/8 categories due to the use of fertilizers, pesticides, and fossil fuel.
- Packaging and marketing greatly contributes to human toxicity and climate change.

EXTENSIVE

- Methane emissions from enteric fermentation are superior
- Use more water
- The use of electricity is inefficient in the market
- People are aware but lack of organization and training

POSIBLE SOLUTIONS

INTENSIVE

- Improve grain production systems to decrease foreign dependency (pesticides, fertilizers, transport)
- Decrease packaging or increase use of low impact materials

EXTENSIVE

- Improve feed quality (legumes) to decrease Green gases
- Improve Non-TIF processes to decrease water consumption
- Trained personnel
- Manure management (digesters or land use)
- Importance of communicating chain actors the relevance of integration from the environmental point of view.

Social Results-1

Social Results-2

- Intensive chain
 - -83% male
 - -17% women
 - •85% slaughterhouse
 - •11% animal production
- Extensive chain
 - 88% male
 - -12% women
 - 50% slaughterhouse
 - •50% animal production

Gracias

